Mexico City
Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space
With the widespread application of Large Language Models (LLMs) to various domains, concerns regarding the trustworthiness of LLMs in safety-critical scenarios have been raised, due to their unpredictable tendency to hallucinate and generate misinformation. Existing LLMs do not have an inherent functionality to provide the users with an uncertainty/confidence metric for each response it generates, making it difficult to evaluate trustworthiness. Although several studies aim to develop uncertainty quantification methods for LLMs, they have fundamental limitations, such as being restricted to classification tasks, requiring additional training and data, considering only lexical instead of semantic information, and being prompt-wise but not response-wise. A new framework is proposed in this paper to address these issues.
These narrow evaluations create the appearance that the open-source models outperform proprietary ones
Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an overly optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope that CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress.
Understanding Transformers via N-gram Statistics
Transformer based large-language models (LLMs) display extreme proficiency with language yet a precise understanding of how they work remains elusive. One way of demystifying transformer predictions would be to describe how they depend on their context in terms of simple template functions. This paper takes a first step in this direction by considering families of functions (i.e.
Perception of Knowledge Boundary for Large Language Models through Semi-open-ended Question Answering
Large Language Models (LLMs) are widely used for knowledge-seeking purposes yet suffer from hallucinations. The knowledge boundary of an LLM limits its factual understanding, beyond which it may begin to hallucinate. Investigating the perception of LLMs' knowledge boundary is crucial for detecting hallucinations and LLMs' reliable generation. Current studies perceive LLMs' knowledge boundary on questions with concrete answers (close-ended questions) while paying limited attention to semi-open-ended questions that correspond to many potential answers. Some researchers achieve it by judging whether the question is answerable or not. However, this paradigm is not so suitable for semi-open-ended questions, which are usually "partially answerable questions" containing both answerable answers and ambiguous (unanswerable) answers.
Nearest Neighbor Speculative Decoding for LLM Generation and Attribution Minghan Li1
Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts.
Aligning to Thousands of Preferences via System Message Generalization Seongyun Lee 1 Sue Hyun Park 1 Seungone Kim 2
Although humans inherently have diverse values, current large language model (LLM) alignment methods often assume that aligning LLMs with the general public's preferences is optimal. A major challenge in adopting a more individualized approach to LLM alignment is its lack of scalability, as it involves repeatedly acquiring preference data and training new reward models and LLMs for each individual's preferences. To address these challenges, we propose a new paradigm where users specify what they value most within the system message, steering the LLM's generation behavior to better align with the user's intentions. However, a naive application of such an approach is non-trivial since LLMs are typically trained on a uniform system message (e.g., "You are a helpful assistant"), which limits their ability to generalize to diverse, unseen system messages.
Mapping Hymns and Organizing Concepts in the Rigveda: Quantitatively Connecting the Vedic Suktas
Bollineni, Venkatesh, Crk, Igor, Gultepe, Eren
Accessing and gaining insight into the Rigveda poses a non-trivial challenge due to its extremely ancient Sanskrit language, poetic structure, and large volume of text. By using NLP techniques, this study identified topics and semantic connections of hymns within the Rigveda that were corroborated by seven well-known groupings of hymns. The 1,028 suktas (hymns) from the modern English translation of the Rigveda by Jamison and Brereton were preprocessed and sukta-level embeddings were obtained using, i) a novel adaptation of LSA, presented herein, ii) SBERT, and iii) Doc2Vec embeddings. Following an UMAP dimension reduction of the vectors, the network of suktas was formed using k-nearest neighbours. Then, community detection of topics in the sukta networks was performed with the Louvain, Leiden, and label propagation methods, whose statistical significance of the formed topics were determined using an appropriate null distribution. Only the novel adaptation of LSA using the Leiden method, had detected sukta topic networks that were significant (z = 2.726, p < .01) with a modularity score of 0.944. Of the seven famous sukta groupings analyzed (e.g., creation, funeral, water, etc.) the LSA derived network was successful in all seven cases, while Doc2Vec was not significant and failed to detect the relevant suktas. SBERT detected four of the famous suktas as separate groups, but mistakenly combined three of them into a single mixed group. Also, the SBERT network was not statistically significant.
Detection of Somali-written Fake News and Toxic Messages on the Social Media Using Transformer-based Language Models
Mohamed, Muhidin A., Ahmed, Shuab D., Isse, Yahye A., Mohamed, Hanad M., Hassan, Fuad M., Assowe, Houssein A.
The fact that everyone with a social media account can create and share content, and the increasing public reliance on social media platforms as a news and information source bring about significant challenges such as misinformation, fake news, harmful content, etc. Although human content moderation may be useful to an extent and used by these platforms to flag posted materials, the use of AI models provides a more sustainable, scalable, and effective way to mitigate these harmful contents. However, low-resourced languages such as the Somali language face limitations in AI automation, including scarce annotated training datasets and lack of language models tailored to their unique linguistic characteristics. This paper presents part of our ongoing research work to bridge some of these gaps for the Somali language. In particular, we created two human-annotated social-media-sourced Somali datasets for two downstream applications, fake news \& toxicity classification, and developed a transformer-based monolingual Somali language model (named SomBERTa) -- the first of its kind to the best of our knowledge. SomBERTa is then fine-tuned and evaluated on toxic content, fake news and news topic classification datasets. Comparative evaluation analysis of the proposed model against related multilingual models (e.g., AfriBERTa, AfroXLMR, etc) demonstrated that SomBERTa consistently outperformed these comparators in both fake news and toxic content classification tasks while achieving the best average accuracy (87.99%) across all tasks. This research contributes to Somali NLP by offering a foundational language model and a replicable framework for other low-resource languages, promoting digital and AI inclusivity and linguistic diversity.
Enhancing Persona Consistency for LLMs' Role-Playing using Persona-Aware Contrastive Learning
Ji, Ke, Lian, Yixin, Li, Linxu, Gao, Jingsheng, Li, Weiyuan, Dai, Bin
In recent years, large language models (LLMs) have achieved breakthrough progress in many dialogue generation tasks. However, their lack of emotion and fine-grained role awareness limits the model's ability to provide personalized and diverse interactions further. Current methods face high costs in collecting high-quality annotated data for scenarios such as role-playing, and traditional human alignment methods are difficult to deploy due to the inherent diversity of model behavior in role-playing scenarios. Inspired by the alignment of models for safety behaviors through RLHF (Reinforcement Learning from Human Feedback), in this paper, we revisit model role-playing behavior from the perspective of persona alignment and propose a novel annotation-free framework named \textbf{\underline{P}}ersona-Aware \textbf{\underline{C}}ontrastive \textbf{\underline{L}}earning (PCL) to align LLMs' behavior during role-playing, enhancing the model's role consistency. Specifically, we first design a role chain method to encourage the model to self-question based on the role characteristics and dialogue context to adjust personality consistency. Then, we further enhance the model's role-playing strategy through iterative contrastive learning between the use of role characteristics and not. Experiments on both black-box and white-box LLMs show that LLMs equipped with PCL significantly outperform vanilla LLMs under automatic evaluation methods (CharEval \& GPT-4) and human expert evaluation.